Synthesis of Some

N (4,5,5-Trisubstituted- Δ^2 -1,3,4-thiadiazolin-2-yl)-N,N'-dimethylureas

E. V. P. Tao* and G. S. Staten

The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206 Received July 18, 1983

The synthesis of some N(4,5,5-trisubstituted- Δ^2 -1,3,4-thiadiazolin-2-yl)-N,N'-dimethylureas is described.

J. Heterocyclic Chem., 21, 599 (1984).

As part of a continuing interest in the synthesis of N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N'-dimethylurea, 1 [1-3], it appeared appropriate to synthesize and determine the biological activities of some related N-(4,5,5-

trisubstituted- Δ^2 -1,3,4-thiadiazolin-2-yl)-N,N'-dimethylureas, **3**.

In 1975, Werber, et al. [4], reported methylation of 2-amino-5-benzoyl-1,3,4-thiadiazole with methyl iodide proceded exclusively on the ring nitrogen in position 3 giving

good yields of the thiadiazoline 4. Werber, et al. [5], also reported the synthesis of some thiadiazoline derivatives 5 by oxidative cyclization of thiosemicarbazones with ferric chloride. Shawali and Abdelhamid [6] described an effi-

cient and rapid experimental procedure for the synthesis of 5-imino-4-phenyl-2-benzoyl- Δ^2 -1,3,4-thiadiazoline, **6**, from the reaction of thiocyanic acid, 2-oxo-2-phenyl ethyl

ester with benzene diazonium chloride. They have proposed a reaction sequence which is consistent with the data. The key step in this mechanism is the formation of the hydrazone 7 which subsequently cyclizes to afford 6.

In 1980, Kubota, et al. [7] described the synthesis of 5-substituted-4-acyl-2-(acylamino)- Δ^2 -1,3,4-thiadiazolines by acylation of thiosemicarbazones.

During the course of our study of the relationship of structures and biological activities of some N-(4,5,5-trisubstituted- Δ^2 -1,3,4-thiadiazolin-2-yl)-N,N'-dimethylureas, we developed a synthetic method leading to 4,5,5-trisubstituted-2-methylamino- Δ^2 -1,3,4-thiadiazolines, 2. This allows the urea functionality to be introduced at the C-2 position of the thiadiazoline ring moiety. We now wish to report a convenient procedure for the preparation of 2 directly from the reaction of carbonyl compounds, 4-methyl-3-thiosemicarbazide and acyl chlorides. Conversion to 3 was subsequently effected by reaction of 2 with phosgene and methyl amine. The transformation has proven successful with a variety of carbonyl compounds and acyl chlorides (Table I). The phosgenation reaction was found to be a general procedure for the preparation of ureas, 3 (Table II). This sequence of reaction is depicted in Scheme 1.

Scheme I

$$CH_{3}NH \xrightarrow{N} NHNH_{2} + R \xrightarrow{O} CI + R_{1} \xrightarrow{R_{1}} R_{2} \xrightarrow{N} H \xrightarrow{N} \stackrel{N}{\underset{N}{\longrightarrow}} R_{1}$$

$$CH_{3} \xrightarrow{N} N \xrightarrow{N} R_{1} \xrightarrow{R_{1}} R_{2}$$

$$CH_{3} \xrightarrow{R_{1}} R_{2}$$

EXPERIMENTAL

Compounds 2a-l were prepared either by method A or B depending on the availability of the carbonyl compounds. Melting points, yields and elemental analyses are shown in Table I. Satisfactory spectroscopic data (ms, nmr) were obtained for all substances. The melting points, yields and elemental analyses of compounds 3a-l are shown in Table II. All compounds possessed satisfactory spectral data (ms, nmr).

 $Table\ I$ 4,5,5-Substituted-2-methylamino- Δ^2 -1,3,4-thiadiazolines

							Analyses						
	_						Calculated			Found			
Compound	R	R_1	R,	Method	Yield, %	Mp °C	С	H	N	С	H	N	
2a	t-butyl	CH ₃	CH,	A	79.0	162-164	52.37	8.35	18.32	52.17	8.66	18.05	
2 b	<i>t</i> -butyl	CH ₃	Н	В	38.6	102-103	50.44	7.53	19.67	50.29	7.57	19.44	
2c	t-butyl	C_2H_5	H	В	60.2	78.5-80	52.60	7.95	18.40	52.39	7.94	18.20	
2d	t-butyl	C_2H_5	CH,	A	62.0	132-136	54.29	8.70	17.27	54.06	8.61	17.33	
2e	<i>t-</i> butyl	-CH,CH,C	H,CH,CH,-	В	47.6	157-158	57.96	8.61	15.60	57.81	8.47	15.48	
2 f	CH ₃	CH ₃	CH ₃	A	56.1	114-115.5	44.90	7.00	22.44	44.75	6.83	22.20	
2g	C ₆ H ₅	СН,	CH ₃	A	31.8	130-135	57.81	6.06	16.85	57.82	6.12	16.91	
2h	$o ext{-}F ext{-}C_6H_4$	CH,	CH,	A	62.2	135.5-138.5	53.92	5.28	15.72	53.66	5.13	15.52	
2 i	p-F-C ₆ H ₄	СН,	CH,	A	74.1	156-158	53.92	5.28	15.72	53.68	5.47	15.71	
2 j	o - CF_s - C_6H_4	CH ₃	CH _a	A	55.2	164-169	49.21	4.44	13.24	49.35	4.36	13.22	
2k	m-CF ₃ -C ₆ H ₄	CH,	CH_3	A	61.1	111-115	49.21	4.44	13.24	49.31	4.36	13.32	
21	p-CF ₃ -C ₆ H ₄	CH ₃	СĦ̂,	A	53.3	107-112	49.21	4.44	13.24	49.02	4.17	13.06	

 $\label{eq:Table II} Table \ II \\ N\-(4,5,5\text{-Substituted-}\Delta^2\-1,3,4\text{-thiadiazolin-}2\text{-yl-}N,N'\text{-dimethylureas}$

Compound	R	R_1	R_2	Yield, %		Analyses						
					Мр °С	Calculated			Found			
						С	H	N	С	Н	N	
3a	t-butyl	СН,	CH ₃	80.4	128-130	50.33	7.44	19.56	50.14	7.82	19.59	
3b	t-butyl	CH,	H	77.2	168-169	48.51	7.40	20.57	48.52	7.31	20.37	
3 c	<i>t</i> -butyl	C ₂ H ₅	H	64.6	144-146	50.33	7.74	19.56	50.12	7.55	19.45	
3d	t-butyl	C ₂ H ₅	CH,	47.6	124-126.5	51.97	8.05	18.65	51.74	7.95	18.38	
3e	t-butyl	-CH ₂ CH ₂ C	H,CH,CH,	89.7	195-196	55.19	8.03	17.16	55.39	7.87	16.98	
3f	CH ₃	CH,	CH ₃	70.6	154-155.5	44.25	6.60	22.93	44.32	6.84	23.24	
3 g	C ₆ H ₅	CH ₃	CH ₃	58.8	150-152	54.88	5.92	18.29	55.10	5.63	18.17	
3h	o-F-C ₆ H ₄	CH ₃	CH,	82.1	120-123	51.84	5.28	17.27	51.78	5.02	17.42	
3i	p-F-C ₆ H ₄	CH,	CH,	65.7	151-153	51.84	5.28	17.27	52.00	5.35	17.36	
3j [*]	o-CF ₃ -C ₆ H ₄	CH ₃	CH,	64.2	128-130	48.12	4.58	14.97	48.19	4.64	15.04	
3k	m-CF ₃ -C ₆ H ₄	CH,	CH,	48.0	145-148	48.12	4.58	14.97	47.91	4.84	15.23	
31	p-CF ₃ -C ₆ H ₄	CH ₃	CH3	37.8	141-144	48.12	4.58	14.97	47.98	4.58	14.75	

Method A. 5,5-Dimethyl-4-(trifluoromethylbenzoyl)-2-methylamino- Δ^2 -1,3,4-thiadiazoline (2k).

4-Methyl-3-thiosemicarbazide (42 g, 0.4 mole) and pyridine (32 g) were added to acetone (200 ml), and the mixture was stirred at ambient temperature for fifteen minutes. 3-Trifluoromethylbenzoyl chloride (83.6 g, 0.4 mole) was added dropwise at 20-25° (external cooling required). After being stirred at room temperature for three hours, water (200 ml) was added and the mixture was cooled to 5°. The resulting precipitate was removed by filtration and recrystallized from nitromethane to give 77.5 g (61%) of 2k, mp 111-115°; nmr (DMSO-d₆): δ 2.18 (s, δ , 5-CH₃), 2.65 (d, 3, J = 5 Hz, N-CH₃), 6.98 (q, 1, J = 5 Hz, N-H), 7.9 (m, 4, aromatic protons).

Method B. 5-methyl-4-(pivaloyl)-2-methylamino- Δ^2 -1,3,4-thiadiazoline (2b).

Pivaloyl chloride (12.1 g, 0.1 mole) was added dropwise between 20-25° with cooling to a stirred mixture containing toluene (200 ml), 4-methyl-3-thiosemicarbazide (10.5 g, 0.1 mole), acetaldehyde (4.4 g, 0.1 mole) and pyridine (7.9 g, 0.1 mole). After being stirred at ambient temperature for

three hours, water (50 ml) was added. The layers were separated, and the organic layer was washed with water. Toluene was removed under vacuum, and the resulting oil was recrystallized from nitromethane to afford 8.3 g (38.6%) of 2b, mp 102-103°; nmr (deuteriochloroform): δ 1.32 (s, 9, t-butyl), 1.50 (d 3, J = 6.2 Hz, 5-CH₃), 2.98 (d, 3, J = 5 Hz, N-CH₃), 4.68 (s, 1, N-H), 6.22 (q, 1, J = 6.2 Hz, C-H).

N-(4-Pivaloyl-5,5-dimethyl- Δ^2 -1,3,4-thiadiazolin-2-yl)-N,N'-dimethylurea (3a).

A hot solution of 4-pivaloyl-5,5-dimethyl-2-methylamino- Δ^2 -1,3,4-thia-diazoline (2a) (22.9 g, 0.1 mole) in toluene (150 ml) was added dropwise to a solution of phosgene (8 ml) and triethylamine (14 ml) in toluene (150 ml) while the reaction temperature was maintained between -10° and -5° with cooling. The reaction mixture was allowed to come to room temperature and was heated to 30°. It was then washed with water (125 ml). Aqueous methylamine (40%, 75 ml) was added dropwise in toluene solution between 0-10° with cooling. The reaction mixture was stirred at room temperature for two hours, and the layers were separated. Toluene

was removed under vacuum, and the resulting residue was slurried into 12.5 ml of water. The product was removed by filtration and washed with water. Recrystallization from acetone-water and vacuum drying at 50° afforded 23 g (80%) of 3a, mp 128-130°; nmr (DMSO-d₆): δ 1.25 (s, 9, t-butyl), 1.82 (s, 6, CH₃), 2.65 (d, 3, J = 5 Hz, N-CH₃), 3.38 (s, 3, N-CH₃), 7.42 (q, 1, J = 5 Hz, N-H).

REFERENCES AND NOTES

- [1] E. V. P. Tao, Synth. Commun., 4, 249 (1974).
- [2] E. V. P. Tao and C. F. Christie, Jr., Org. Prep. Proced. Int.,

7, 179 (1975).

- [3] British Patent, 1,266,172 (1969); Chem. Abstr., 72, 100717u (1970).
- [4] G. Werber, F. Buccheri and N. Vivona, J. Heterocyclic Chem., 12, 841 (1975).
 - [5] G. Werber, F. Buccheri and M. L. Marino, ibid., 12, 581 (1975).
- [6] A. S. Shawali and A. O. Abdelhamid, Tetrahedron Letters, 163 (1975).
- [7] S. Kubota, Y. Ueda, K. Fujikane, K. Toyooka and M. Shibuya, J. Org. Chem., 45, 1473 (1980).